تحلیل جریان انرژی تولید انگور در خراسان شمالی به روش شبکه عصبی مصنوعی

نویسندگان

  • فاطمه نادی گروه مکانیک ماشین های کشاورزی، واحد آزادشهر، دانشگاه آزاد اسلامی، آزادشهر، ایران
  • محمدحسن نامور دانش آموخته کارشناس ارشد مکانیزاسیون کشاورزی، واحد آزادشهر، دانشگاه آزاد اسلامی، آزادشهر، ایران
چکیده مقاله:

به منظور مدل‌سازی انرژی مصرفی تولید انگور در استان خراسان شمالی، پژوهشی با استفاده از سیستم‌های شبکه عصبی مصنوعی انجام گرفت. اطلاعات مورد نیاز به­وسیله پرسش‌نامه و مصاحبه حضوری با باغداران در سال زراعی 94-1393 جمع‌آوری شدند. نتایج نشان داد که مجموع انرژی مصرفی، انرژی خروجی و کارایی انرژی انگور در استان خراسان شمالی به ترتیب 61/52553 مگاژول بر هکتار، 17/283513 مگاژول بر هکتار و 39/5 بود. کودهای شیمیایی با 98/35094 مگاژول بر هکتار انرژی مصرفی، سهمی در حدود 67 درصد از مجموع انرژی مصرفی تولید را به خود اختصاص دادند. سهم شکل‌های تجدیدپذیر و غیرتجدیدپذیر انرژی در تولید به ترتیب 15 و 85 درصد به‌دست آمد. نتایج شبکه عصبی مصنوعی نشان داد که بهترین ساختار برای مدل‌سازی جریان انرژی تولید انگور 1-10-6 بود. ضریب تبیین بهترین ساختار برای تولید انگور معادل 98/0 به­دست آمد. بنابراین، این مدل به­عنوان بهترین روش برای برآورد انرژی خروجی تولید انگور بر اساس انرژی‌های ورودی در منطقه مورد مطالعه انتخاب شد.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تولید مصنوعی جریان رودخانه با استفاده از شبکه‌های عصبی مصنوعی

در این مطالعه قابلیت مدل‎های شبکه عصبی مصنوعی در زمینه تولید مصنوعی جریان ارزیابی می‌شود. مدلی که برای تولید مصنوعی بکار رفته با ترکیب مدل شبکه عصبی و یک مؤلفه تصادفی با توزیع نرمال ایجاد شده است. در توسعه مدل از شبکه‌ عصبی چند لایه تغذیه پیشرفتی با الگوریتم آموزشی انتشار برگشتی خطا استفاده شده است. بر این اساس مدل، سری‌های بلند مدت و تا 300 سال جریان مصنوعی روزانه در رودخانه خرسان را تنها با ...

متن کامل

تخمین انرژی شکست بتن با استفاده از شبکه عصبی مصنوعی

بتن یکی از رایج‏ترین مصالح صنعتی و ساختمانی است که به دلیل اقتصادی بودن اهمیت روز افزونی پیدا می‏کند. در سال‏های اخیر با بهره‏گیری از روش‏های مختلف آزمایشگاهی، پارامتر‏های شکست مواد سیمانی مانند بتن مورد بررسی قرار گرفته است؛ نقش این پارامتر‏ها در طراحی سازه‏های سطحی و زیر‏سطحی از اهمیت ویژه‏ای برخوردار است. در این مقاله مدل شکست بر ‏اساس شبکه عصبی برای تخمین پارامترشکست بتن  GF(انرژی مخصوص شکس...

متن کامل

تولید مصنوعی جریان رودخانه با استفاده از شبکه های عصبی مصنوعی

در این مطالعه قابلیت مدل‎های شبکه عصبی مصنوعی در زمینه تولید مصنوعی جریان ارزیابی می شود. مدلی که برای تولید مصنوعی بکار رفته با ترکیب مدل شبکه عصبی و یک مؤلفه تصادفی با توزیع نرمال ایجاد شده است. در توسعه مدل از شبکه عصبی چند لایه تغذیه پیشرفتی با الگوریتم آموزشی انتشار برگشتی خطا استفاده شده است. بر این اساس مدل، سری های بلند مدت و تا 300 سال جریان مصنوعی روزانه در رودخانه خرسان را تنها با اس...

متن کامل

پیش بینی تولید آبزیان دریایی در ایران با استفاده از روش ARIMA و شبکه عصبی مصنوعی

پیش­بینی پدیده­های اقتصادی ساختاری فراهم می­کند تا مدیران و مسؤلان اقتصادی را در گرفتن تصمیم‌های درست یاری ­دهد. هدف اصلی این مطالعه پیش­بینی مقدار تولید آبزیان دریایی در ایران است. برای این منظور از روش­های سری زمانی خود توضیح جمعی میانگین متحرک (ARIMA)[1] و شبکه عصبی مصنوعی[2] استفاده می­شود. در این مطالعه سه ساختار گوناگون شبکه عصبی شامل شبکه عصبی پیشرو[3]، تابع پایه شعاعی[4] و المن[5] بکار ...

متن کامل

تولید شتابنگاشت مصنوعی زلزله با استفاده از شبکه عصبی فازی

نیاز روزافزون به تحلیل دینامیکی تاریخچه زمانی و عدم­وجود شتابنگاشت­های مناسب در مناطق مختلف، تولید شتابنگاشت­های مصنوعی سازگار با طیف طرح را ضروری می­سازد. هدف اصلی این تحقیق ارائه روشی نوین، بر اساس تبدیل بسته موجک و روش های هوش مصنوعی  برای تولید شتابنگاشت مصنوعی زلزله سازگار با طیف طرح بر اساس مقدار بزرگا، فاصله از گسل و طیف مربوطه می باشد. در این تحقیق از شبکه های عصبی فازی و آنالیز موجک پک...

متن کامل

ارزیابی کارایی روش توابع متعامد تجربی نسبت به سیستم استنتاج فازی و شبکه عصبی مصنوعی برای پیش‌بینی جریان

برای پیش­بینی مقدار جریان ورودی، معمولا دو روش کلی مدل‌سازی متکی به فرآیند و مدل­سازی متکی به داده استفاده می‌شود. از جمله روش‌های متکی به داده در زمینه پیش­بینی جریان رودخانه، مدل­های شبکه عصبی مصنوعی، مدل­های رگرسیون، مدل­های سری­زمانی و مدل­های منطق­فازی می­باشد. در این تحقیق کارایی روش دیگری به نام تکنیک توابع متعامد تجربی نسبت به روش‌های شبکه عصبی مصنوعی و سیستم استنتاج فازی برای پیش­بینی ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 48  شماره 4

صفحات  435- 443

تاریخ انتشار 2017-12-22

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023